Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters










Publication year range
1.
Conserv Physiol ; 12(1): coae019, 2024.
Article in English | MEDLINE | ID: mdl-38715929

ABSTRACT

Animals can respond to extreme climates by behaviourally avoiding it or by physiologically coping with it. We understand behavioural and physiological thermoregulation, but water balance has largely been neglected. Climate change includes both global warming and changes in precipitation regimes, so improving our understanding of organismal water balance is increasingly urgent. We assessed the hydric physiology of US federally endangered blunt-nosed leopard lizards (Gambelia sila) by measuring cutaneous evaporative water loss (CEWL), plasma osmolality and body condition. Measurements were taken throughout their active season, the short period of year when these lizards can be found aboveground. Compared to a more mesic species, G. sila had low CEWL which is potentially desert-adaptive, and high plasma osmolality that could be indicative of dehydration. We hypothesized that throughout the G. sila active season, as their habitat got hotter and drier, G. sila would become more dehydrated and watertight. Instead, CEWL and plasma osmolality showed minimal change for females and non-linear change for males, which we hypothesize is connected to sex-specific reproductive behaviours and changes in food availability. We also measured thermoregulation and microhabitat use, expecting that more dehydrated lizards would have lower body temperature, poorer thermoregulatory accuracy and spend less time aboveground. However, we found no effect of CEWL, plasma osmolality or body condition on these thermal and behavioural metrics. Finally, G. sila spends considerable time belowground in burrows, and burrows may serve not only as essential thermal refugia but also hydric refugia.

2.
ACS Appl Mater Interfaces ; 16(17): 22614-22621, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38641328

ABSTRACT

Carbon nanomembranes (CNMs), with a high density of subnanometer channels, enable superior salt separation performance compared to conventional membranes. However, defects that occur during the synthesis and transfer processes impede their technical realization on a macroscopic scale. Here, we introduce a practical and scalable interfacial polymerization method to effectively heal defects while preserving the subnanometer pores within CNMs. The defect-healed freestanding CNMs show an exceptional performance in forward osmosis (FO), achieving a water flux of 105 L m-2 h-1 and a specific reverse salt flux of 0.1 g L-1 when measured with 1 M NaCl as draw solution. This water flux is 10 times higher than that of commercially available FO membranes, and the reverse salt flux is 70% lower. Through successful implementation of the defect-healing method and support optimization, we demonstrate the synthesis of fully functional, centimeter-scale CNM-based composite membranes showing high water permeance and a high salt rejection. Our defect-healing method presents a promising pathway to overcome limitations in CNM synthesis, advancing their potential for practical salt separation applications.

3.
Small Methods ; 8(3): e2300944, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38009726

ABSTRACT

Many metals form nanometer-thin self-passivating oxide layers upon exposure to the atmosphere, which affects a wide range of interfacial properties and shapes the way how metals interact with their environment. Such native oxide layers are commonly analyzed by X-ray photoelectron spectroscopy (XPS), which provides a depth-resolved chemical state and compositional analysis either by ion etching or modeling of the electron escape depths. The latter is commonly used to calculate the average thickness of a native oxide layer. However, the measurement of concentration profiles at the oxide-metal interface remains challenging. Here, a simple and accessible approach for the depth profiling of ultrathin oxide layers within single fixed-angle XPS spectra is proposed. Instead of using only one peak in the spectrum, as is usually the case, all peaks within the energy range of a standard lab device are utilized, thus resembling energy-resolved XPS without the need for a synchrotron. New models that allow the calculation of depth-resolved concentration profiles at the oxide-metal interface are derived and tested, which are also valid for angular- and energy-resolved XPS. The proposed method not only improves the accuracy of earlier approaches but also paves the way for a more holistic understanding of the XPS spectrum.

4.
Nanoscale Adv ; 5(21): 5900-5906, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37881710

ABSTRACT

Nanofibers are currently among the most researched nanomaterials in materials science. Various high-resolution microscopy techniques are used for morphological investigations, with the diameter as primary characteristic. Since methodological factors influencing the diameter distribution are usually ignored, numerical values can hardly be compared across different or even within single studies. Here, we investigate influencing factors such as microscopy technique, degree of magnification, eventual coatings, and the analysts' bias in the image selection and evaluation. We imaged a single nanofiber sample using scanning electron microscopy (SEM), helium ion microscopy (HIM), atomic force microscopy (AFM), and transmission electron microscopy (TEM). These techniques yield significant methodological variations between the diameter distributions. We further observed a strong influence of analysts' subjectivity, with a consistent average deviation between 4 different analysts of up to 31%. The average deviation between micrographs within each category was 14%, revealing a considerable influence of micrograph selection and strong potential for cherry picking. The mean values were mostly comparable with the results using automated image analysis software, which was more reproducible, much faster, and more accurate for images with lower magnification. The results demonstrate that one of the most frequently measured characteristics of nanofibers is subject to strong systematic fluctuations that are rarely if ever addressed.

5.
ACS Appl Mater Interfaces ; 15(34): 41101-41108, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37587014

ABSTRACT

Nanoporous carbon nanomembranes (CNMs) created by self-assembled monolayers ideally combine a high water flux and precise ion selectivity for molecular separation and water desalination. However, their practical implementation is often challenged by the availability of large epitaxial substrates, limiting the membrane up-scaling. Here, we report a scalable synthesis of CNMs from poly(4-vinylbiphenyl) (PVBP) spin-coated on SiO2/Si wafers. Electron irradiation of the amorphous PVBP molecular layers induces the formation of a continuous membrane with a thickness of 15 nm and a high density of subnanometer pores, providing a water permeance as high as 530 L m-2 h-1 bar-1, while repelling ions and molecules larger than 1 nm in size. A further introduction of a reinforced porous block copolymer layer enables the fabrication of centimeter-scale CNM composites that efficiently separate organic dyes from water. These results suggest a feasible route for large-scale nanomembrane fabrication.

6.
Mol Ecol ; 32(17): 4880-4897, 2023 09.
Article in English | MEDLINE | ID: mdl-37466017

ABSTRACT

A fundamental goal of population genetic studies is to identify historical biogeographic patterns and understand the processes that generate them. However, localized demographic events can skew population genetic inference. Assessing populations with multiple types of genetic markers, each with unique mutation rates and responses to changes in population size, can help to identify potentially confounding population-specific demographic processes. Here, we compared population structure and connectivity inferred from microsatellites and restriction site-associated DNA loci among 17 populations of an arid-specialist lizard, the desert night lizard, Xantusia vigilis, in central California to test among historical processes structuring population genetic diversity. We found that both marker types yielded generally concordant insights into population genetic structure including a major phylogenetic break maintained between two populations separated by less than 10 km, suggesting that either marker type could be used to understand generalized demographic patterns across the region for management purposes. However, we also found that the effects of demography on marker discordance could be used to elucidate population histories and distinguish among competing biogeographic hypotheses. Our results suggest that comparisons of within-population diversity across marker types provide powerful opportunities for leveraging marker discordance, particularly for understanding the creation and maintenance of contact zones among clades.


Subject(s)
Lizards , Animals , Lizards/genetics , Phylogeny , DNA, Mitochondrial/genetics , Genetics, Population , Microsatellite Repeats/genetics , Genetic Variation/genetics , Phylogeography
7.
RSC Adv ; 13(21): 14181-14189, 2023 May 09.
Article in English | MEDLINE | ID: mdl-37180004

ABSTRACT

Hydrothermal carbonization (HTC) is an efficient thermochemical method for the conversion of organic feedstock to carbonaceous solids. HTC of different saccharides is known to produce microspheres (MS) with mostly Gaussian size distribution, which are utilized as functional materials in various applications, both as pristine MS and as a precursor for hard carbon MS. Although the average size of the MS can be influenced by adjusting the process parameters, there is no reliable mechanism to affect their size distribution. Our results demonstrate that HTC of trehalose, in contrast to other saccharides, results in a distinctly bimodal sphere diameter distribution consisting of small spheres with diameters of (2.1 ± 0.2) µm and of large spheres with diameters of (10.4 ± 2.6) µm. Remarkably, after pyrolytic post-carbonization at 1000 °C the MS develop a multimodal pore size distribution with abundant macropores > 100 nm, mesopores > 10 nm and micropores < 2 nm, which were examined by small-angle X-ray scattering and visualized by charge-compensated helium ion microscopy. The bimodal size distribution and hierarchical porosity provide an extraordinary set of properties and potential variables for the tailored synthesis of hierarchical porous carbons, making trehalose-derived hard carbon MS a highly promising material for applications in catalysis, filtration, and energy storage devices.

8.
Ecol Evol ; 13(5): e10128, 2023 May.
Article in English | MEDLINE | ID: mdl-37214602

ABSTRACT

Positive associations between animals and foundational shrub species are frequent in desert ecosystems for shelter, resources, refuge, and other key ecological processes. Herein, we tested the impact of the density of the shrub species Ephedra californica on the presence and habitat use of the federally endangered lizard species, Gambelia sila. To do this, we used a 3-year radio telemetry dataset and satellite-based counts of shrub density across sites at the Carrizo Plain National Monument in San Luis Obispo County, CA. The effect of shrub density on lizard presence was contrasted with previous shrub cover analyses to determine whether measures of shrub density were superior to shrub cover in predicting lizard presence. Increasing shrub density increased lizard presence. As shrub density increased, lizards were located more frequently "above ground" versus "below ground" in burrows. Male lizards had significantly larger home ranges than females, but both sexes were similarly associated with increasing shrub densities. Shrub density and shrub cover models did not significantly differ in their prediction of lizard presence. These findings suggest that both habitat measures are effective analogs and that ecologically, both cover and the density of foundation shrub species are key factors for some desert lizards.

9.
Diabetes ; 71(12): 2572-2583, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36170659

ABSTRACT

Mitochondria play a vital role in white adipose tissue (WAT) homeostasis including adipogenesis, fatty acid synthesis, and lipolysis. We recently reported that the mitochondrial fusion protein optic atrophy 1 (OPA1) is required for induction of fatty acid oxidation and thermogenic activation in brown adipocytes. In the current study we investigated the role of OPA1 in WAT function in vivo. We generated mice with constitutive or inducible knockout of OPA1 selectively in adipocytes. Studies were conducted under baseline conditions, at thermoneutrality, following high-fat feeding or during cold exposure. OPA1 deficiency reduced mitochondrial respiratory capacity in white adipocytes, impaired lipolytic signaling, repressed expression of de novo lipogenesis and triglyceride synthesis pathways, and promoted adipose tissue senescence and inflammation. Reduced WAT mass was associated with hepatic triglycerides accumulation and glucose intolerance. Moreover, mice deficient for OPA1 in adipocytes had impaired adaptive thermogenesis and reduced cold-induced browning of subcutaneous WAT and were completely resistant to diet-induced obesity. In conclusion, OPA1 expression and function in adipocytes are essential for adipose tissue expansion, lipid biosynthesis, and fatty acid mobilization of WAT and brown adipocytes and for thermogenic activation of brown and beige adipocytes.


Subject(s)
Adipose Tissue, White , Lipid Metabolism , Animals , Mice , Adipocytes, Brown/metabolism , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Fatty Acids/metabolism , Lipid Metabolism/genetics , Mice, Inbred C57BL , Mitochondrial Proteins/metabolism , Thermogenesis/genetics , Triglycerides/metabolism , Cold Temperature
10.
J Hered ; 113(6): 589-596, 2022 11 30.
Article in English | MEDLINE | ID: mdl-36136001

ABSTRACT

Conservation science and environmental regulation are sibling constructs of the latter half of the 20th century, part of a more general awakening to humanity's effect on the natural world in the wake of 2 world wars. Efforts to understand the evolution of biodiversity using the models of population genetics and the data derived from DNA sequencing, paired with legal and political mandates to protect biodiversity through novel laws, regulations, and conventions arose concurrently. The extremely rapid rate of development of new molecular tools to document and compare genetic identities, and the global goal of prioritizing species and habitats for protection are separate enterprises that have benefited from each other, ultimately leading to improved outcomes for each. In this article, we explore how the California Conservation Genomics Project has, and should, contribute to ongoing and future conservation implementation, and how it serves as a model for other geopolitical regions and taxon-oriented conservation efforts. One of our primary conclusions is that conservation genomics can now be applied, at scale, to inform decision-makers and identify regions and their contained species that are most resilient, and most in need of conservation interventions.


Subject(s)
Biodiversity , Conservation of Natural Resources , Genomics , Genetics, Population , Policy
11.
J Hered ; 113(6): 632-640, 2022 11 30.
Article in English | MEDLINE | ID: mdl-35939354

ABSTRACT

The glossy snake (Arizona elegans) is a polytypic species broadly distributed across southwestern North America. The species occupies habitats ranging from California's coastal chaparral to the shortgrass prairies of Texas and southeastern Nebraska, to the extensive arid scrublands of central México. Three subspecies are currently recognized in California, one of which is afforded state-level protection based on the extensive loss and modification of its preferred alluvial coastal scrub and inland desert habitat. We report the first genome assembly of A. elegans occidentalis as part of the California Conservation Genomics Project (CCGP). Consistent with the reference genome strategy of the CCGP, we used Pacific Biosciences HiFi long reads and Hi-C chromatin-proximity sequencing technologies to produce a de novo assembled genome. The assembly comprises a total of 140 scaffolds spanning 1,842,602,218 base pairs, has a contig NG50 of 61 Mb, a scaffold NG50 of 136 Mb, and a BUSCO complete score of 95.9%, and is one of the most complete snake genome assemblies. The A. e. occidentalis genome will be a key tool for understanding the genomic diversity and the basis of adaptations within this species and close relatives within the hyperdiverse snake family Colubridae.


Subject(s)
Colubridae , Animals , Colubridae/genetics , Arizona , Genomics , Genome , Chromosomes
12.
ACS Appl Mater Interfaces ; 14(7): 9433-9441, 2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35157431

ABSTRACT

Despite the prospects of intrinsically porous planar nanomaterials in separation applications, their synthesis on a large scale remains challenging. In particular, preparing water-selective carbon nanomembranes (CNMs) from self-assembled monolayers (SAMs) is limited by the cost of epitaxial metal substrates and molecular precursors with specific chemical functionalities. In this work, we present a facile fabrication of CNMs from polycyclic aromatic hydrocarbons (PAHs) that are drop-cast onto arbitrary supports, including foils and metalized films. The electron-induced carbonization is shown to result in continuous membranes of variable thickness, and the material is characterized with a number of spectroscopic and microscopic techniques. Permeation measurements with freestanding membranes reveal a high degree of porosity, but the selectivity is found to strongly depend on the thickness. While the permeance of helium remains almost the same for 6.5 and 3.0 nm thick CNMs, water permeance increases by 2 orders of magnitude. We rationalize the membrane performance with the help of kinetic modeling and vapor adsorption experiments.

13.
Ecol Evol ; 11(21): 14843-14856, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34765145

ABSTRACT

Global climate change is already contributing to the extirpation of numerous species worldwide, and sensitive species will continue to face challenges associated with rising temperatures throughout this century and beyond. It is especially important to evaluate the thermal ecology of endangered ectotherm species now so that mitigation measures can be taken as early as possible. A recent study of the thermal ecology of the federally endangered Blunt-nosed Leopard Lizard (Gambelia sila) suggested that they face major activity restrictions due to thermal constraints in their desert habitat, but that large shade-providing shrubs act as thermal buffers to allow them to maintain surface activity without overheating. We replicated this study and also included a population of G. sila with no access to large shrubs to facilitate comparison of the thermal ecology of G. sila populations in shrubless and shrubbed sites. We found that G. sila without access to shrubs spent more time sheltering inside rodent burrows than lizards with access to shrubs, especially during the hot summer months. Lizards from a shrubbed site had higher midday body temperatures and therefore poorer thermoregulatory accuracy than G. sila from a shrubless site, suggesting that greater surface activity may represent a thermoregulatory trade-off for G. sila. Lizards at both sites are currently constrained from using open, sunny microhabitats for much of the day during their short active seasons, and our projections suggest that climate change will exacerbate these restrictions and force G. sila to use rodent burrows for shelter even more than they do now, especially at sites without access to shrubs. The continued management of shrubs and of burrowing rodents at G. sila sites is therefore essential to the survival of this endangered species.

14.
Small ; 17(46): e2102975, 2021 11.
Article in English | MEDLINE | ID: mdl-34643032

ABSTRACT

Filtration through membranes with nanopores is typically associated with high transmembrane pressures and high energy consumption. This problem can be addressed by reducing the respective membrane thickness. Here, a simple procedure is described to prepare ultrathin membranes based on protein nanopores, which exhibit excellent water permeance, two orders of magnitude superior to comparable, industrially applied membranes. Furthermore, incorporation of either closed or open protein nanopores allows tailoring the membrane's ion permeability. To form such membranes, the transmembrane protein ferric hydroxamate uptake protein component A (FhuA) or its open-pore variant are assembled at the air-water interface of a Langmuir trough, compressed to a dense film, crosslinked by glutaraldehyde, and transferred to various support materials. This approach allows to prepare monolayer or multilayer membranes with a very high density of protein nanopores. Freestanding membranes covering holes up to 5 µm in diameter are visualized by atomic force microscopy (AFM), helium ion microscopy, and transmission electron microscopy. AFM PeakForce quantitative nanomechanical property mapping (PeakForce QNM)  demonstrates remarkable mechanical stability and elastic properties of freestanding monolayer membranes with a thickness of only 5 nm. The new protein membrane can pave the way to energy-efficient nanofiltration.


Subject(s)
Nanopores , Membranes, Artificial , Microscopy, Atomic Force , Microscopy, Electron, Transmission
15.
Small ; 17(52): e2104392, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34713582

ABSTRACT

Unlike graphene and similar structures, 2D covalent organic frameworks (2D COFs) exhibit intrinsic porosity with a high areal density of well-defined and uniform openings. Given the pore size adjustability, 2D COFs are likely to outperform artificially perforated inorganic layers with respect to their prospects in membrane separation. Yet, exploring the mass transport in 2D COFs is hidden by the lack of laterally extended free-standing membranes. This work reports on direct molecular permeation measurements with single crystals of an interfacially synthesized boronate ester 2D COF. In accordance with the material topography, the atmospheric and noble gases readily pass the suspended nanosheets while their areal porosity is quantified to be almost 40% exceeding that in any 2D membranes known. However, bulkier aromatic hydrocarbons are found to deviate substantially from Graham's law of diffusion. Counterintuitively, the permeation rate is demonstrated to rise from benzene to toluene and further to xylene despite the increase in the molecular mass and dimensions. The results are interpreted in terms of adsorption-mediated flow that appears to be an important transport mechanism for microporous planar nanomaterials.

16.
Elife ; 102021 05 04.
Article in English | MEDLINE | ID: mdl-33944779

ABSTRACT

Adrenergic stimulation of brown adipocytes alters mitochondrial dynamics, including the mitochondrial fusion protein optic atrophy 1 (OPA1). However, direct mechanisms linking OPA1 to brown adipose tissue (BAT) physiology are incompletely understood. We utilized a mouse model of selective OPA1 deletion in BAT (OPA1 BAT KO) to investigate the role of OPA1 in thermogenesis. OPA1 is required for cold-induced activation of thermogenic genes in BAT. Unexpectedly, OPA1 deficiency induced fibroblast growth factor 21 (FGF21) as a BATokine in an activating transcription factor 4 (ATF4)-dependent manner. BAT-derived FGF21 mediates an adaptive response by inducing browning of white adipose tissue, increasing resting metabolic rates, and improving thermoregulation. However, mechanisms independent of FGF21, but dependent on ATF4 induction, promote resistance to diet-induced obesity in OPA1 BAT KO mice. These findings uncover a homeostatic mechanism of BAT-mediated metabolic protection governed in part by an ATF4-FGF21 axis, which is activated independently of BAT thermogenic function.


Subject(s)
Adipose Tissue, Brown/metabolism , Body Temperature Regulation/genetics , Fibroblast Growth Factors/metabolism , GTP Phosphohydrolases/genetics , Gene Deletion , Adipocytes, Brown/physiology , Adipose Tissue, White/physiology , Animals , Female , Fibroblast Growth Factors/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Obesity/genetics
17.
Beilstein J Nanotechnol ; 12: 172-179, 2021.
Article in English | MEDLINE | ID: mdl-33614383

ABSTRACT

Helium ion microscopy (HIM) offers the opportunity to obtain direct views of biological samples such as cellular structures, virus particles, and microbial interactions. Imaging with the HIM combines sub-nanometer resolution, large depth of field, and high surface sensitivity. Due to its charge compensation capability, the HIM can image insulating biological samples without additional conductive coatings. Here, we present an exploratory HIM study of SARS-CoV-2 infected Vero E6 cells, in which several areas of interaction between cells and virus particles, as well as among virus particles, were imaged. The HIM pictures show the three-dimensional appearance of SARS-CoV-2 and the surface of Vero E6 cells at a multiplicity of infection of approximately 1 with great morphological detail. The absence of a conductive coating allows for a distinction between virus particles bound to the cell membrane and virus particles lying on top of the membrane. After prolonged imaging, it was found that ion-induced deposition of hydrocarbons from the vacuum renders the sample sufficiently conductive to allow for imaging even without charge compensation. The presented images demonstrate the potential of the HIM in bioimaging, especially for the imaging of interactions between viruses and their host organisms.

18.
Nat Commun ; 11(1): 5255, 2020 10 16.
Article in English | MEDLINE | ID: mdl-33067456

ABSTRACT

Approaches that root national climate strategies in local actions will be essential for all countries as they develop new nationally determined contributions under the Paris Agreement. The potential impact of climate action from non-national actors in delivering higher global ambition is significant. Sub-national action in the United States provides a test for how such actions can accelerate emissions reductions. We aggregated U.S. state, city, and business commitments within an integrated assessment model to assess how a national climate strategy can be built upon non-state actions. We find that existing commitments alone could reduce emissions 25% below 2005 levels by 2030, and that enhancing actions by these actors could reduce emissions up to 37%. We show how these actions can provide a stepped-up basis for additional federal action to reduce emissions by 49%-consistent with 1.5 °C. Our analysis demonstrates sub-national actions can lead to substantial reductions and support increased national action.

19.
Sci Rep ; 10(1): 4884, 2020 03 17.
Article in English | MEDLINE | ID: mdl-32184467

ABSTRACT

Globally, no species is exempt from the constraints associated with limited available habitat or resources, and endangered species in particular warrant critical examination. In most cases, these species are restricted to limited locations, and the relative likelihood of resource use within the space they can access is important. Using Gambelia sila, one of the first vertebrate species listed as endangered, we used resource selection function analysis of telemetry and remotely sensed data to identity key drivers of selected versus available locations for this species in Carrizo Plain National Monument, USA. We examined the probability of selection given different resource types. Increasing shrub cover, lower and relatively more flat sites, increasing normalized difference vegetation index, and solar radiation all significantly predicted likelihood of observed selection within the area sampled. Imagery data were also validated with fine-scale field data showing that large-scale contrasts of selection relative to available location patterns for animal species are a useful lens for potential habitat. Key environmental infrastructure such as foundation plant species including shrubs or local differences in the physical attributes were relevant to this endangered species.


Subject(s)
Endangered Species , Lizards , Plants , Animals , Conservation of Natural Resources , Ecosystem , Mice
20.
Chemphyschem ; 21(10): 1006-1011, 2020 05 18.
Article in English | MEDLINE | ID: mdl-32202365

ABSTRACT

Self-assembled monolayers (SAMs) serve as convenient platform for fabricating carbon nanomembranes (CNMs) of extended lateral dimensions. Highly porous CNMs are emerging as interesting materials for membrane technologies as they exhibit selectivity for water permeation and, owing to their reduced dimensionality, promise increased energy efficiency compared to established systems. In the present study terphenylcarboxylate SAMs, prepared on silver underpotential deposited on Au and irradiated by 100 eV electrons, were successfully converted into free-standing CNMs. Infrared and X-ray photoelectron spectroscopy reveal pronounced chemical changes both of the anchoring carboxylate moiety and the aromatic backbone upon electron irradiation. Permeation studies showed high specificity for water as demonstrated by the separation from tetrahydrofuran. Compared to thiols on gold, the standard CNM precursor system, the carboxylic acid based SAM exhibits equivalent characteristics. This suggests that electron-induced carbonization is insensitive to the particular choice of the anchor moiety and, therefore, the choice of precursor molecules can be extended to the versatile class of aromatic carboxylic acids.

SELECTION OF CITATIONS
SEARCH DETAIL
...